An automatic approach to identify word sense changes in text media across timescales
نویسندگان
چکیده
In this paper, we propose an unsupervised and automated method to identify noun sense changes based on rigorous analysis of time-varying text data available in the form of millions of digitized books and millions of tweets posted per day. We construct distributional-thesauribased networks from data at different time points and cluster each of them separately to obtain word-centric sense clusters corresponding to the different time points. Subsequently, we propose a split/join based approach to compare the sense clusters at two different time points to find if there is ‘birth’ of a new sense. The approach also helps us to find if an older sense was ‘split’ into more than one sense or a newer sense has been formed from the ‘join’ of older senses or a particular sense has undergone ‘death’. We use this completely unsupervised approach (a) within the Google books data to identify word sense differences within a media, and (b) across Google books and Twitter data to identify differences in word sense distribution across different media. We conduct a thorough evaluation of the proposed methodology both manually as well as through comparison with WordNet.
منابع مشابه
Automatic identification of word sense change across different timescales
In this paper, we propose an unsupervised method to identify noun sense changes based on rigorous analysis of time-varying text data available in the form of millions of digitized books. We construct distributional thesauri based networks from data at different time points and cluster each of them separately to obtain word-centric sense clusters corresponding to the different time points. Subse...
متن کاملThat's sick dude!: Automatic identification of word sense change across different timescales
In this paper, we propose an unsupervised method to identify noun sense changes based on rigorous analysis of time-varying text data available in the form of millions of digitized books. We construct distributional thesauri based networks from data at different time points and cluster each of them separately to obtain word-centric sense clusters corresponding to the different time points. Subse...
متن کاملA survey on Automatic Text Summarization
Text summarization endeavors to produce a summary version of a text, while maintaining the original ideas. The textual content on the web, in particular, is growing at an exponential rate. The ability to decipher through such massive amount of data, in order to extract the useful information, is a major undertaking and requires an automatic mechanism to aid with the extant repository of informa...
متن کاملAutomatic Construction of Persian ICT WordNet using Princeton WordNet
WordNet is a large lexical database of English language, in which, nouns, verbs, adjectives, and adverbs are grouped into sets of cognitive synonyms (synsets). Each synset expresses a distinct concept. Synsets are interlinked by both semantic and lexical relations. WordNet is essentially used for word sense disambiguation, information retrieval, and text translation. In this paper, we propose s...
متن کاملAutomatically Identifying Changes in the Semantic Orientation of Words
The meanings of words are not fixed but in fact undergo change, with new word senses arising and established senses taking on new aspects of meaning or falling out of usage. Two types of semantic change are amelioration and pejoration; in these processes a word sense changes to become more positive or negative, respectively. In this first computational study of amelioration and pejoration we ad...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Natural Language Engineering
دوره 21 شماره
صفحات -
تاریخ انتشار 2015